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Outline

Honeywell

e Context
- verification of safety-critical avionics software (and HW)
- complex, real-time, fault tolerant
- why do we need formal methods?
* Approach
- model checking
- tools
 Examples
- real-time operating system for avionics
- triplex sensor voter
e Conclusions
- What’s in it for me?
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What's in it for me?

Honeywell

* Depends on who you are...
- avionics manufacturer
- airframer/integrator
- airline
- regulator
- flying public
e ...and what you do
- engineer
- QA/test
- DER
- management

« Attempt to answer from a viewpoint of a
practitioner (rather than a researcher)

- how to apply real tools to real systems for real airplanes
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Formal methods

Honeywell

e analysis is a necessary part of any engineering discipline
« formal methods = specification & analysis of SW designs

 why analyze software?

- imagine building the mechanical components of an aircraft today
without structural & aerodynamic analyses

+ “We’'ll just build it and see if it flies.”
- all software-related failures are due to design errors
+ doesn’t break or wear out
+ testing and HW fault-models inadequate
- software is too easy to change
+ susceptible to new errors at all life-cycle stages
- software errors are logical errors
+ obscured by representation
« difficult to detect errors by inspection
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What is/are formal methods?

Honeywell

e using ideas and techniques from mathematics and formal logic
 to specify and reason about computing systems

* to increase design assurance and eliminate defects

by allowing comprehensive analysis of requirements and design
and complete exploration of system behavior

including fault conditions

augmented by automated SW tools
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Test vs. formal analysis

Honeywell
- Inputs - Inputs
+ Requirements + Test cases + + Requirements + Design +
Executable + Target platform Environment
- Outputs - Reachability analysis
+ Test results - Outputs

+ Correctness
+ State space coverage
¢ Fault handling behaviors

+ Structural coverage metrics

[ initial configuration
S testexecution trace
° error state

Q reachable state space

HL-formal-methods.ppt



Model checking

Honeywell

« System modeled as automaton (state machine)

» Performs exhaustive state space search with various mechanisms for
reducing state space

- explicit state model checkers (Spin)
- symbolic model checkers (SMV)
* Properties specified as
- assertions on particular system states
- path specifications (sequences of states — temporal logic)
* Checks if properties hold in any or all states or sequences of states
- or that negation of property is not reachable in the model
* Originally developed for hardware and protocol verification
- current research focusing on software verification
* Main advantage: produces counter-examples for aid in debugging
* Main disadvantage: state explosion problem

- this problem is slowly being mitigated by various advanced techniques and
Moore’s law

* Approaches
- model derived from design specification
- model derived from implementation / code
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Tools: SPIN

 Holzmann (Bell Labs, NASA)
* Input

- Promela - guarded command language

* Analysis features
- LTL, assertions, liveness
- asynchronous processes

- partial order reduction, compression,

state space approximation
« Output
- results & statistics
- message sequence chart
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Tools: SMV/NuSMV

Honeywell

Clarke (CMU) and others

Text interface

synchronous data flow language

CTL specs

counter examples as sequence of states

[ Command Prompt

C:wProgram FilessSMU~smuZ . S5examplessmyv mutex.zmy
—— specification EF (statel = cl & state2 = c2» is false
— as demonstrated by the following execution sequence

— gpecification AG <statel tl —» AF statel cl?» iz true
—— zpecification AG <{stateZ t2 —» AF =state2 c2} iz true

resources used:

proceszsor time: @ =,

BDD nodes allocated: 56%

Bytez allocated: 1845256

BDD nodes representing transition relation: 31 + 1

C:“Program Files“SMUzmuZ_S“examples>

MODULE main

VAR
statel: {nl

ASSIGN
init(statel
next(statel
case
(statel
(statel
(statel
(statel
(statel
(statel
1: state
esac;

VAR
state2: {n2

<.>

VAR

) -
) =

1

turn: {1, 2};

ASSIGN

init(Cturn) :
next(turn) :

case
(statel
(state2
1: turn;
esac;

SPEC
EF((statel

SPEC
AG((statel

SPEC
AG((state2

nl)
nl)
nl)
t1)
t1)

cl):

t2,

nl)

n2)

cl)

t1)

t2)

, Cl};

nl;
& (state2 = t2):
& (state2 = n2):
& (state2 = c2):
& (state2 = n2):
& (state2 = t2)

nl;

c2};
& (state2 = t2):
& (statel = tl1):

& (state2 = c2))

-> AF (statel

-> AF (state2

tl;
tl;
tl;
cl;

& (turn = 1): c1;

2;
1;

c1))

c2))
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Tools: SCADE

Honeywell

Esterel
Technologies

Integrated CAD
and verification
graphical
synchronous data
flow language
Design Verifier

Import-export
Simulink designs
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Example 1. RTOS

Honeywell

* Integrated Modular Avionics

- applications of different criticalities share resources (CPU)

- reduced cost, weight, maintenance (reduce amount of “level A”
code)

* Real-time operating system with time partitioning

- scheduler ensures that actions of one thread cannot impact
other threads’ guaranteed access to resources

- RT control tasks: every thread gets its allotted CPU budget
every period

- benefits: fault containment, system upgrades
« Why use formal methods
- concurrency, complexity, real-time guarantees
- high integrity required (level A)
* Goal

- demonstrate effectiveness of model checking to analyze key
properties of safety-critical software that would be difficult or
impossible to establish by traditional means

- advanced debugging: augments existing development process

Tuonouny
zuonouny
cuonouny

shared resource
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Primus Epic integrated avionics system

Honeywell

Business, regional,
and commuter
aircraft

» Bombardier Global
Express

» Raytheon Hawker
Horizon 450

» Agusta-Bell AB-139
» Gulfstream V-SP

 Sino Swearingen
SJ30-2

Auto Pilot
Servos

Hadio Modules Video « Cessna Citation
Data Link Sovereign

Engine and
Aireraft

Utility Systems

* Deos real-time OS
-Primarily business, regional, commuter aircraft

-Primary flight controls, autopilot, displays,
navigation...

-Rate monotonic scheduling with priority
inheritance

-Time & space partitioning, dynamic threads, slack
scheduling, aperiodic interrupts, mutexes

-Portable to various COTS CPUs
-DO-178B Level A

HL-formal-methods.ppt



Unigque aspects of this work

Honeywell

13

« Software analyzed is an actual IMA RTOS
- Deos — currently in service in several aircraft product lines
* Model derived directly from C++ source code
- analysis results closely linked to real system
« Overhead accounting computations explicitly modeled
- critical to timing guarantees

* Advanced scheduling features
- complicates both implementation and analysis

HL-formal-methods.ppt
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Deos com

ponents and terminology

Honeywell

Process - basic entity for resource mgt. (time, memory, mutexes, 1/0,...)
Thread - sequential execution unit (function + period + time budget)

API
HAL
PAL

Kernel

Application <

.

Deos <

Hardware 4[

Process 1 Process 2 Process 3
Thread Thread Thread Thread Thread Thread
o2 <> RS2

TT API
RS2 Platform
TT Kernel TT Registry
o2 o2

HAL PAL
1t 1t
15 L

CPU Platform Hardware

— application programmer’s interface, governs & validates interactions with OS
— HW abstraction layer, interface to CPU

— platform abstraction layer, interface to timers and I/O
Registry — system configuration parameters
— scheduler, memory management, etc.

HL-formal-methods.ppt



Everything you need to know about...

Honeywell

e Rate Monotonic Scheduling
- Always run the highest priority thread that is ready to run

- All threads are periodic and are guaranteed to receive a
statically specified CPU budget every period

+ specify the worst case execution time (WCET) for safety critical
threads

- Programmers do not assign priorities to threads
+ thread priority is inferred from period
+ threads with shorter periods have higher priorities

- Thread notifies kernel when it has finished its execution for a
period

» kernel preempts a thread that attempts to execute beyond its CPU
budget

- Deos uses harmonic periods
+ permits ~100% utilization of CPU time

HL-formal-methods.ppt
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RMS — pictorially

Honeywell

« |dle
 Slow

« Medium
* Fast

B Thread is executing
Thread is ready for execution but has not yet been activated by scheduler
1 Thread has been preempted by higher priority thread

.. Thread has completed for period
t Thread completes for period, activate another thread
v Thread preempted by higher priority thread
1“ Thread consumes budget without completing for period (TBE)

Thread resumed with propagation of TBE exception

4
o
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Structure of model

Honeywell

Process 1 Process 2 Process 3
Application Thread Thread Thread Thread Thread Thread
o4 <> RS2
ﬁ API
S Platform
Deos < ﬁ Kernel ﬁ Registry
L5 L5
HAL PAL
1 1t
R 2 1L
Hardware CPU Platform Hardware
Real system
Kernel .
API calls interrupts Automata to
drive kernel
\ invoke kernel methods /
S
4 context read/write N\
switch Kernel classes timer
and methods Translated
kernel code
- 4

Model

- Separation of system and
environment

- System modeled with high
fidelity, traceability to real
system

+ certification
+ implementation, autocoding
- Environment

+ abstract, only model
necessary parts

+ fault injection
Environment

System to
be verified
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High fidelity model of software

Honeywell

* Model derived from kernel code (rather than specification)
- Accuracy (design = code)
- Utility in verification/certification
- Level of detail required to capture subtle timing behaviors

= void Scheduler::initializelnterruptEvents() - ;nllne Scheduler_initializelnterruptevents()
: t interruptEvents = - InterruptEvent_PTR
. new InterruptEvent*[ numinterrupts ]: - Scheduler_interruptEvents[InterruptEvent MAX];
- for ( platformlnterruptNumber i = 0; - zzte 1=0;
: { I < numinterrupts; i++ ) - 2 (1 < InterruptEvent MAX) ->
° . )_interruptEvents[i] = new InterrupteEvent( NEW_InterruptEvent(Scheduler_interruptEvents[i]);
- ignorePlatforminterrupt]s i . ;:;; > break-
- , 3 Deos scheduler - od: ’ SPIN mode
* 55 files -3 * 20 classes
* 800KB C++ files * 120 methods
« ~15K LOC « >4000 LOC (Promela)

inline Thread waitForNextinterrupt() {
assert(currentBudget.remainingBudget >= 2*contextSwitchPlusDelta+cacheBonus);

HL-formal-methods.ppt



19

Time partitioning error trace

Honeywell

\
Idle never ran

User2: 16/21

Userl budget
returned to main

dle (normalized to 7/20)
8
User2: 21/60 preempt
I
Userl: 21/60 15 delete E;ﬂ?ﬁéjgﬁﬂfdhévﬁsm
. 12 .
0 20 40 60

LTL property -- time partitioning
[l1(startPeriod -> ('endPeriod U i1dleRun))

Penix, Visser, Engstrom, Larson, Weininger, “Verification of Time
Partitioning in the DEOS Scheduler Kernel,” ICSE 2000

HL-formal-methods.ppt
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Time partitioning

Honeywell

* With slack and ISRs, idle thread may never run: need new
approach

- Assertion checked in the tick interrupt handler
- Detects the problem after scheduler has over-committed
- Consists of 2 parts —
+ one for currently running thread
+ another for threads in all periods ending at this tick
- Disjunction of 3 conditions —
+ thread is the Idle thread (no deadline)
+ thread received its full budget (remaining budget = 0)
+ thread voluntarily completed for period
* No errors found

- Doesn’t hold for ISR threads
+ can’'t guarantee interrupt occurs early enough in period
+ but interrupts don’t interfere with other threads

HL-formal-methods.ppt



Overhead accounting

Honeywell

timer
interrupt
(timer =0)

start charging
CPU time
(load timer)

timer interrupt
serviced
(timer < 0)

stop charging
CPU time
(read timer)

CTXin USER \\ : LCS SCHED  |TimerOff
/1
timer setting
thread budget

« Scheduler must ensure that time spent executing a thread (including
kernel overhead) does not exceed thread budget
- Timer loaded when thread is dispatched, counts down to 0
+ response delayed by critical section, e.g. kernel service (LCS)
+ scheduling actions to pick next thread (SCHED)
+ read timer, decrement thread budget, load timer for next thread (TimerOff)

- Pre-deduct overhead quantities from thread budget at dispatch
(“ contextSwitchPlusDelta”)

+ minimum time required to execute a thread that does nothing (USER = 0)
- Implies minimum budget a thread must have to be placed on runnable queue

+ ISR thread must have 2x this amount since it compensates interrupted thread for both context
switches

+ more complicated for slack-consuming threads

HL-formal-methods.ppt



Scheduler operations & overhead

Honeywell

API calls \@/
API

invoke kernel methods

interrupts

read/write
timer

context
switch

Kernel classes
and methods

I Traps (SW interrupts)

 Triggered when user thread
attempts to execute kernel
service

+ Services may include critical
sections (interrupts disabled)

+ charge time to calling thread

- System tick interrupt

+ Generated periodically by
platform hardware

+ Tick handler may cause
currently running thread to be
preempted

+ compensate running thread
from total CPU utilization

- Timer interrupt

+ Generated by platform
hardware

+ Produced when thread timer
runs down to zero

+ charge to thread

- User interrupts

+ Generated asynchronously by
I/O or other hardware

+ May cause currently running
thread to be preempted by ISR
thread

+ ISR compensates interrupted
thread

22
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Precondition for SOPEvent.:makeThreadWait()

Honeywell

 makeThreadWait() precondition: —

Scheduler Timer

Timer = 13
resume

+ remaining budget >
contextSwitchPlusDelta
. slack <
- available slack =2 consumer

- main thread uses budget and
requests slack

- 2*contestSwitchPlusDelta pre-
deducted from available slack,
leaving O

timer
interrupt

CPUallowanceExceeded | __-

CEP Timer=0

- main decides to immediately
complete for period

- when adding main to
startOfPeriodEvent queue the
precondition is violated v

Action:

« when makeThreadWait() is called, the time
remaining for the thread has not yet been
compensated to add contextSwitchPlusDelta

» precondition changed to: remainingBudget > 0

> X

Available
slack =2

i

Start timer with

makeThreadWait \LZ - 2*CSPD

Pre-condition
)2 fails!
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Example 1. summary

Honeywell

- Verified the main time partitioning assertion and function
preconditions for many different system configurations, including
interrupt threads and slack scheduling

+ Increased assurance that this complex system has been designed and
implemented correctly

- ldentified several instances where preconditions were inconsistent
with the intended operation of the scheduler

+ These have been corrected and will improve the quality of code reviews
performed in future verification and certification activities

- ldentified a number of modeling errors

+ Enabled us to refine the model to reflect realistic system behaviors and
increased confidence in our analysis results

- Detected several unexpected system behaviors

+ Improves our understanding of the operation of the system — helpful for
maintenance and system upgrades

HL-formal-methods.ppt
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Example 2: Triplex sensor voter

Honeywell

* Problem

- Algorithm for management of redundant sensors (3)
air data, inertial reference, etc.

- Design captured in Simulink

- Mixture of algorithmic features from several designs
« Why use formal methods

- Fault handling behavior

- High integrity required (level A)

voter

- Leverage Model-Based Development:
+ Flight SW can be autocoded from design
* Objectives
- Comprehensive assessment of design correctness
- Assess automation of translation/verification process
- Tool evaluation (SMV, SAL, SCADE)

actuators

control

HL-formal-methods.ppt



Sensor voter operation

Honeywell

- Digitized sensor signals sampled at 20 Hz
- Valid flag supplied by sensor hardware

- Use valid flag and comparison of redundant measurements to detect and isolate
sensor faults

- Tolerate “false alarms” due to noise, transients, small differences
- Output — composite robust sensor output and valid flag

Persistence i |
v threshold counter ~T

e | Averaging

Input signals (3) :
Filter
differences

Output signal

R alleas | ore sereor s wild
n deesri Fax aprene
i
2 e +
o 4 | vam TmE Goners ; L ]
o E T
© | 1
Lo . ! j ] Kol o serons ae uslld, mrd ey mlscompae |
red eckefrdZ
(TRl

Inputs valid (3)

Output valid
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Persistence threshold counter

Honeywell

* Find the “hidden” state machine...

Over thresh Over thresh Over thresh

Over thresh

Under thresh Under thresh Under thresh ——Under thresh Under thresh

ipuO:

—eaaUNder thresh Under thresh

Over thresh

Persistent

A = sample time
Tp = persistence threshold
N = Tp/A = # of steps to persistence threshold

27 HL-formal-methods.ppt



Voter model

Honeywell
—»  Sensor outputSignal
data InputSignal
World ™ Sensor inputvalid,|  voter val
——  Sensor
* Voter model
- capture behavior of sensor voter algorithm il
] —>
- Sensor model (environment) o out
- measure ‘true’ world data and provide signals to voter >
.. . . . . andGateVector
- fault injection — valid flags, noise, signal errors
* Output signal requirements MODULE andGateVector(inl, in2)
. . VAR
- syntheS|ze correct OUtpUt S|gnal out : array 0 .. 2 of boolean;
.. . . . ASSIGN
- limit transients in output signal out[0] := ini[0] & in2[0];
. . t[1 = inl[1] & in2[1];
- Fault handling requirements otie) = iniba) & inepa:

- detect sensor faults and isolate faulty sensor

- must not produce false alarms due to transient conditions

28
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Environment model

29

non-deterministically
generates input data

fault injection

Honeywell
Environment System To Verify
AN A
- N A
—»  Sensor | outputSignal
E inputSignal
data —P S o . \ t .
! ensor : inputValid voter Vali
—E» Sensor !

for sensors

( specifications )

enforce single fault
hypothesis

NOTE:

Environment must permit all
interesting operational behaviors,
but prohibit all unrealistic behaviors

HL-formal-methods.ppt
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Fault-handling requirements

Honeywell

Valid sensor goes 1 valid sensor goes
(hardware) invalid (hardware) invalid

2 valid sensors
Miscompare,
Output not valid

1 valid sensor
Output valid

0 valid sensors
Output not valid

1 valid sensor goes

(hardware) invalid Persistent
1 valid miscompare
valid sensor goes clears

(hardware) invalid

init
2 valid sensors

No miscompare,
Output valid

3 valid sensors
Output valid

Two pairs of valid sensors
have persistent miscompare.
Eliminate common sensor.

Valid sensors have
persistent miscompare.
(Both are still valid)

SPEC
AG((sensorVoter.numValid=3)"(~sensorl.valid)->
AF(sensorVoter.numVali1d=2))

HL-formal-methods.ppt



Computational requirements

Honeywell

 Does computed output agree with the true environmental input

data?

- within some signal tolerance
- within some time bounds for transients

* Transient may occur at time of sensor faults
- requirements more strict for first fault

apnubew Jous Indino

31

second —

error

first
error

time
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Example 2. summary

Honeywell
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* Precise definition of voter requirements
* Verified computational requirements
 Verified fault handling requirements

« Assessment of 3 model checking tools

HL-formal-methods.ppt



Back to “What’'s in it for me?”

Honeywell

 Why should we support use of formal methods?

- software engineering best practices
+ strengthens “analysis” activities, quantitative assessment of design
+ get it right the first time
- current processes/guidelines not adequate for complex systems
- industry will use if there is a cost advantage
reduced design errors
early detection of errors

*

*

+ improve process predictability DO-178B guidelines
+ facilitates reuse . nglity control — identify and eliminate
] _ design faults
+ automation of manual reviews Formal analyses and proofs = “other means”

alternative to unit test allowed in Section 6.2 to satisfy verification
process objectives in the case of complex

- certification authorities should be prepared | behaviors that are not amenable to testing

i + Quality assurance — identify implementation
+ proposed changes in DO-178C ermrsy imp

Use formal techniques and tools to perform
the reviews and analyses of Section 6.3.2,
identifying and verifying requirements for
functions and components as well as
assumptions regarding their environment

*

HL-formal-methods.ppt
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Formal methods forecast

Honeywell

 Short term — What can we do now?

- practical engineering tool
+ advanced debugging tools for early defect detection/elimination

- augment current processes to increase assurance

- early design verification
+ provides a framework for accurate implementation

- some domain specific tools and automation
+ SCADE, extensions to Simulink
* Long term —Where do we want to be?
- model-based development
- fully integrated into development process
- invisible?
- certification credit for formal analysis

+ alternative to unit testing in some cases
+ analysis of design, distinct from implementation

HL-formal-methods.ppt
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